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Abstract: Peca suggested in a recent paper on the arxiv to consider binary butterfly trees and their Horton-
Strahler numbers. The trees are obtained by glueing two binary trees together in a special way; the results are
again binary trees, but with a different probability distribution. A thorough combinatorial analysis is provided
and leads asymptotically to the same results as for classical binary trees.
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1. Binary trees and Horton-Strahler numbers

We start with some classical observations about binary trees and Horton-Strahler numbers (also called register
function in Computer science). The pioneering papers are by Flajolet, Raoult, and Vuillemin [2] and Kemp [3].
The author has collected some material in [5, 7–9].

Binary trees may be expressed by the following symbolic equation, which says that they include the empty
tree and trees are recursively built from a root followed by two subtrees (left and right), which are binary trees:

B = +

B B

Binary trees are counted by Catalan numbers and the parameter reg, (register function, Horton-Strahler
numbers) is recursively defined by attaching the number 0 to the leaves, and then working our way up: if both
subtrees are labelled with the same number, the root will get 1 + this number, otherwise the larger value of the
subtrees bubbles up. The value at the root is then the parameter of interest.

There is a recursive description of this function: reg(□) = 0, and if tree t has subtrees t1 and t2, then

reg(t) =

{
max{reg(t1), reg(t2)} if reg(t1) ̸= reg(t2),

1 + reg(t1) otherwise.

Here is an example:

2

1 2

0 1 1 1

0 0 0 0 0 0

Let Rp denote the family of binary trees with Horton-Strahler number equal to p, then one gets immediately
from the recursive definition:

Rp =

Rp−1 Rp−1

+

Rp

∑
j<p

Rj

+ ∑
j<p

Rj Rp



Helmut Prodinger

In terms of generating functions, these equations are translated into

Rp(z) = zR2
p−1(z) + 2zRp(z)

∑
j<p

Rj(z);

the variable z is used to mark the size (i. e., the number of internal nodes) of the binary tree. See [7]; compare
also [9].

Flajolet et al. resp. Kemp were able to solve this explicitly! Nowadays, several strategies to do this are
known; we only report the results as they will be used later in this paper. The substitution

z =
u

(1 + u)2

that de Bruijn, Knuth, and Rice [1] also used, produces the nice expression

Rp(z) =
1− u2

u

u2
p

1− u2p+1 .

The generating function Sp(z) = Rp + Rp+1 + Rp+2 + · · · of binary trees with register function ≥ p is equally
important. One can check directly that

Sp =

Sp−1 Sp−1

+

Sp B\Sp−1

+

B\Sp−1 Sp

Hence

Sp(z) = zS2
p−1 + zSp(B − Sp−1) + z(B − Sp−1)Sp, p ≥ 1, S0 = B,

and

Sp(z) =
1− u2

u

u2
p

1− u2p
.

Peca [4] introduced a “butterfly” tree by glueing two binary trees together. The motivation came from
binary search trees, which are binary trees but with a different statistics underlying; binary search trees are
equivalent to permutations and thus enumerated by n!, not by Catalan numbers. The interest was, however, in
the Horton-Strahler numbers of the “butterfly” trees. The operation ⊕ is first defined on permutations: The
operation π1 ⊕ π2 is defined like this: Both permutations are written in one-line notation in terms of 1, 2, . . . ;
then, the second permutation is lifted up by m, if m is the size of the permutation π1; with the resulting string
of numbers, the final binary search tree is formed. A thorough analysis of the Horton-Strahler numbers in these
butterfly trees was requested in [4]. This is the purpose of this paper.

The resulting tree can be described without permutations by finding the rightmost leaf of t1, and then
replacing it with the tree t2. Peca also considered a version of ⊖, but that is basically a symmetric version of
⊕, and we will not consider it further. The resulting object is again a binary tree, but one cannot reconstruct
the two binary trees t1 and t2 from it. In order to do so, we consider the path from the root to the rightmost
leaf, and consider exactly one edge as being distinguished (marked). From this, the reconstruction is possible.
We avoid considering the empty tree for t1 since the path of interest has no edges.

The generating function of these marked binary trees is A := (B − 1)B = u(1 + u). The enumeration is as
follows, since B is known:

A =
1− 3z

2z2
− (1− z)

√
1− 4z

2z2
, [zn]A(z) =

3(2n)!

(n− 1)!(n+ 2)!
, n ≥ 1.

When we consider the elements of A and ignore the marking of an edge on the rightmost path, we have
a binary tree and thus can introduce the Horton-Strahler numbers on the elements of A . No object has
Horton-Strahler number equal to 0, and we introduce Tp(z), the generating function of the elements of A with
Horton-Strahler number ≥ p. We will find a recursion for Tp that is akin to the recursion for Sp and use the fact
that Sp is explicitly known. This is similar to [6] where the author solved a problem left open by Yekutieli and
Mandelbrot [10], although the present situation is more involved. The further considerations deserve a section
on its own.
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Figure 1: Two binary trees t1, t2, the rightmost leaf of t1 indicated, and then t2 glued there, with resulting
binary tree t1 ⊕ t2
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Figure 2: The resulting tree t1 ⊕ t2 can originate in two possible ways from glueing two trees together.

2. Horton-Strahler numbers resulting from glueing to-
gether two binary trees

Recall that

Sp(z) = zS2
p−1 + zSp(B − Sp−1) + z(B − Sp−1)Sp, p ≥ 1.

Using a similar reasoning, distinguishing whether the first right edge is marked (first line) or is not marked
(second line), we find

Tp(z) = zS2
p−1 + zSp(B − Sp−1) + z(B − Sp−1)Sp + zSp−1Tp−1 + zSp(A− Tp−1) + z(B − Sp−1)Tp,

or

Tp(z) = Sp + zSp−1Tp−1 + zSp(A− Tp−1) + z(B − Sp−1)Tp, p ≥ 2, and T1 = A.

Further

Tp(z)
(
1− z(B − Sp−1)

)
= Sp(1 + zA) + zTp−1(Sp−1 − Sp).

A direct computation yields

1− z(B − Sp−1) =
1− u2

p−1+1

(1 + u)(1− u2p−1)
, 1 + zA =

1 + u+ u2

1 + u
.

Further

Sp−1 − Sp = Rp−1 =
1− u2

u

u2
p−1

1− u2p
.

Some rearrangements lead to

Tp(z)(1− u2
p−1+1)(1 + u2

p−1

) =
1− u2

u
u2

p

(1 + u+ u2) + Tp−1(1− u)u2
p−1

;

this first order recursion will be solved by introduction of summation factors and eventually by summation.
This will be done in a few steps;

Tp(z)

u2p
(1− u2

p−1+1)(1 + u2
p−1

) =
1− u2

u
(1 + u+ u2) +

Tp−1(z)

u2p−1 (1− u);

Tp(z)

u2p
(1− u2

p−1+1)

p−1∏
j=0

(1 + u2
j

) =
1− u2

u
(1 + u+ u2)

p−2∏
j=0

(1 + u2
j

) +
Tp−1(z)

u2p−1 (1− u)

p−2∏
j=0

(1 + u2
j

).
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Evaluating the products yields

Tp(z)(1− u2
p−1+1)

u2p
(1− u2

p

) =
1− u2

u
(1 + u+ u2)(1− u2

p−1

) +
Tp−1(z)(1− u2

p−1

)

u2p−1 (1− u)

and

Tp(z)(1− u2
p

)

u2p(1− u)p
(1− u2

p−1+1) =
1− u2

u(1− u)p
(1 + u+ u2)(1− u2

p−1

) +
Tp−1(z)(1− u2

p−1

)

u2p−1(1− u)p−1

Introducing a further product,

Tp(z)(1− u2
p

)

u2p(1− u)p

p−1∏
j=0

(1− u2
j+1)

=
1 + u

u(1− u)p−1
(1 + u+ u2)(1− u2

p−1

)

p−2∏
j=0

(1− u2
j+1) +

Tp−1(z)(1− u2
p−1

)

u2p−1(1− u)p−1

p−2∏
j=0

(1− u2
j+1).

An abbreviation is useful:

ωp :=
Tp(z)(1− u2

p

)

u2p(1− u)p

p−1∏
j=0

(1− u2
j+1),

then we get a form that can be summed:

ωp = ωp−1 +
1 + u

u(1− u)p−1
(1 + u+ u2)(1− u2

p−1

)

p−2∏
j=0

(1− u2
j+1)

and so

ωp = ω1 +

p−1∑
h=1

1 + u

u(1− u)h
(1 + u+ u2)(1− u2

h

)

h−1∏
j=0

(1− u2
j+1).

Coming back to the original quantities Tp(z),

Tp(z) = ωp
u2

p

(1− u)p

(1− u2p)

/ p−1∏
j=0

(1− u2
j+1)

=

[
(1 + u)2 + (1 + u+ u2)

p−1∑
h=1

1− u2
h

1− u

h−1∏
j=0

1− u2
j+1

1− u

]
× 1− u2

u

u2
p

1− u2p

p−1∏
j=0

1− u

1− u2j+1
.

Note that
1− u2

u

u2
p

1− u2p
= Sp(z).

Theorem 2.1. The generating function Tp(z) of trees in A with Horton-Strahler number ≥ p is for p ≥ 0
given by

Tp(z) = Sp(z)

[
(1 + u)2 + (1 + u+ u2)

p−1∑
h=1

1− u2
h

1− u

h−1∏
j=0

1− u2
j+1

1− u

] p−1∏
j=0

1− u

1− u2j+1
.

Note that this formula has been tested. Since the generating function is fully explicit one has (in principle)
access to the coefficients, i. e., to the numbers of binary butterfly trees of a given number of nodes and a given
Horton-Strahler number.

3. The average value of Horton-Strahler numbers in marked
binary trees

By general principles, the generating function ∑
p≥1

Tp(z)
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is, apart from normalization, the generating function of the averages; note that it was∑
p≥1

Sp(z)

in the classical case, and the latter series is well-understood.
To understand the strategy, we need to expand the generating function around u = 1; in some instances it

helps to set u = e−t and expand around t = 0. Consider[
(1 + u)2 + (1 + u+ u2)

p−1∑
h=1

1− u2
h

1− u

h−1∏
j=0

1− u2
j+1

1− u

] p−1∏
j=0

1− u

1− u2j+1
; (1)

the term
1− u2

u

∑
p≥1

u2
p

1− u2p
will be brought in later.

The ugly term (1) is actually simpler to handle, since we are only interested in the leading term, which is a

constant (in the expansion around t = 0). For the following we might replace a factor 1−ud

1−u by d, and instead
of (1) consider

λp :=

[
4 + 3

p−1∑
h=1

2h
h−1∏
j=0

(2j + 1)

] p−1∏
j=0

1

2j + 1
.

The sequence λp converges to 3 exponentially fast. We consider now

∑
p≥1

u2
p

1− u2p
λp =

∑
p,k≥1

λpe
−tk2p .

The Mellin transformation will be applied, as in many related projects:

M
∑
p,k≥1

λpe
−tk2p = ζ(s)M

∑
p≥1

λpe
−t2p = ζ(s)Γ(s)

∑
p≥1

λp2
−ps

︸ ︷︷ ︸
Λ(s):=

.

Now

Λ(s) =
∑
p≥1

λp2
−ps =

3

2s − 1
+

∑
p≥1

O(2−p)2−ps.

The remainder has shifted singularities, and thus the dominant ones are at ℜs = 0. The general plan is to look
at the inverse Mellin transform ζ(s)Γ(s)Λ(s)t−s and at its residues. Since the dominant ones are at ℜs = 0, we

can concentrate on 3ζ(s)Γ(s) t−s

2s−1 , which is just 3 times the relevant quantity for classical binary trees.
For the final averages of the Horton-Strahler numbers, we have to divide by

[zn]A(z) =
3(2n)!

(n− 1)!(n+ 2)!
=

3(2n)!

n!(n+ 1)!

(
1 + O

( 1

n

))
,

so that within the accuracy the average Horton-Strahler numbers are computed, the asymptotic formula is the
same:

Theorem 3.1. The average value of the Horton-Strahler numbers (register function) of all butterfly trees in
the sense of Peca of size n is given by the asymptotic formula (with χk = 2kπi

log 2 )

log4 n− γ

2 log 2
− 1

log 2
+

1

2
+ log2 π +

1

log 2

∑
k ̸=0

ζ(χk)Γ
(χk

2

)
(χk − 1)nχk/2

= log4 n− γ

2 log 2
− 1

log 2
+

1

2
+ log2 π + ψ(log4 n),

with a tiny periodic function ψ(x) of period 1.

These oscillations are usually bounded by 10−5, say. See [2] for some explicit error bounds in the classical
case. The remainder term in the asymptotic formula is of the form O((log∗n)/n) and has never been computed
explicitly, neither in the classical case nor for the butterfly trees, because of the complexity of the computations.
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